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Applying six classifiers to airborne hyperspectral imagery for detecting

giant reed
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(Received 27 August 2011; final version received 18 November 2011)

This study evaluated and compared six image classifiers, including minimum
distance (MD), Mahalanobis distance (MAHD), maximum likelihood (ML),
spectral angle mapper (SAM), mixture tuned matched filtering (MTMF) and
support vector machine (SVM), for detecting and mapping giant reed (Arundo
donax L.), an invasive weed that presents a severe threat to agroecosystems
throughout the southern US and northern Mexico. Airborne hyperspectral
imagery was collected from a giant reed-infested site along the US-Mexican
portion of the Rio Grande in 2009 and 2010. The imagery was transformed with
minimum noise fraction (MFN) and the six classifiers were applied to the 30-band
MNF imagery for each year. Accuracy assessment showed that SVM and ML
generally performed better than the other four classifiers for overall classification
and for distinguishing giant reed in both years. These results indicate that
airborne hyperspectral imagery in conjunction with SVM and ML classification
techniques is effective for detecting giant reed.

Keywords: maximum likelihood; mixture tuned matched filtering (MTMF);
support vector machine (SVM); airborne hyperspectral imagery; giant reed

1. Introduction

Giant reed (Arundo donax L.) is a bamboo-like perennial grass that grows 3–10 m
tall and spreads from horizontal rootstocks below the soil to form large colonies
(Dudley 2000). It typically grows in riparian areas and floodplains and can be found
on wet stream banks, gravel bars or dry banks away from permanent water
(Newhouser et al. 1999). Currently, giant reed is an invasive weed throughout the
southern half of the US and northern Mexico with the densest stands growing along
the Rio Grande in Texas and the coastal rivers of southern California (Bell 1997,
Everitt et al. 2004, Yang et al. 2011).

Giant reed consumes excessive amounts of water to supply its incredible rate of
growth (Iverson 1994) and displaces native vegetation, leading to the destruction of
wildlife habitats (Khudamrongsawat et al. 2004). Giant reed has become a major
threat to riparian areas and watersheds in the Rio Grande Basin. Giant reed is also a
major impediment to border patrol operations of the US Department of Homeland
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Security’s Customs and Border Protection along the international border between
Laredo and Del Rio, TX, overrunning border access roads, reducing visibility and
providing dense cover for illegal activities (Cleere 2007). The Department of
Homeland Security officials have called for an immediate operational plan to control
this invasive weed.

Accurate information on the spatial distribution and infested areas of giant reed
is essential for effective management of this invasive weed. Remote sensing has the
potential for providing timely and accurate information on the infestations of giant
reed. Airborne multispectral imagery was evaluated for mapping giant reed
infestations in Monterey County, California (Oakins 2001). Airborne visible infrared
imaging spectrometer (AVIRIS) hyperspectral imagery was used for detecting and
mapping giant reed in riparian areas in southern California (DiPietro et al. 2002).
The light reflectance characteristics of giant reed were described and the application
of aerial colour-infrared (CIR) photography and videography for detecting and
mapping giant reed infestations in riparian areas in Texas was demonstrated (Everitt
et al. 2004). More recently, high resolution satellite imagery has become available for
remote sensing applications and provided new opportunities for effectively mapping
invasive weeds. Both 2.8-m QuickBird and 10-m SPOT 5 satellite imagery have been
evaluated for distinguishing giant reed infestations along the Rio Grande in
southwest Texas (Everitt et al. 2005, 2008). The results showed that high resolution
satellite imagery could be used to detect and map giant reed infestations as
accurately as aerial photography and airborne multispectral imagery. As practical
applications, 40 QuickBird images acquired between 2002 and 2007 from the
Mexican portion of the Rio Grande Basin were used to estimate giant reed-infested
areas and an estimated 4775 ha of giant reed existed along the major tributaries in
the Mexican portion of the Basin (Yang et al. 2009b). Estimates based on aerial CIR
photography taken in 2002 indicate that the portion of the Rio Grande from San
Ygnacio to Lajitas, TX, a river length of 898 km, was infested with giant reed and
that total giant reed area was 5981 ha (Yang et al. 2011).

Although aerial photography, airborne multispectral imagery and satellite
imagery can be used successfully for mapping giant reed infestations, hyperspectral
imagery that contains more spectral bands has the potential for more accurate
classification in areas where there exist spectrally similar vegetation species to giant
reed. Airborne hyperspectral imagery in conjunction with various image classifica-
tion techniques has been evaluated for mapping a number of invasive weed species,
including leafy spurge (Euphorbia esula L.) (Parker-Williams and Hunt 2002, Glenn
et al. 2005), iceplant [Carpobrotus edulis (L.) N.E. Br] and jubata grass [Cortaderia
jubata (Lem.) Stapf] (Underwood et al. 2003), hoary cress (Lepidium draba L.)
(Mundt et al. 2005), waterhyacinth [Eichhornia crassipes (Mart.) Solms] (Yang and
Everitt 2007), yellow starthistle (Centaurea solstitialis L.) (Miao et al. 2006),
saltcedar (Tamarix sp. Lour.) (Narumalani et al. 2006, 2009), Ashe juniper
(Juniperus ashei Buchholz) (Yang et al. 2009) and broom snakeweed [Gutierrezia
sarothrae (Pursh.) Britt. and Rusby] (Yang and Everitt 2010). Currently, very limited
research has been conducted on the use of hyperspectral imagery for detecting giant
reed. As hyperspectral image data are becoming more available and less expensive, it
is necessary to evaluate this type of image data and identify optimal classification
methods for this application. Therefore, the objectives of this study were to evaluate
airborne hyperspectral imagery and compare six commonly used classifiers,
including minimum distance (MD), Mahalanobis distance (MAHD), maximum
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likelihood (ML), spectral angle mapper (SAM), mixture tuned matched filtering
(MTMF) and support vector machine (SVM), for distinguishing giant reed.

2. Methods

2.1 Study site

This study was conducted at a giant reed-infested area along the US-Mexico portion
of Rio Grande near Quemado, TX. Giant reed grows in association with woody and
herbaceous vegetation on both sides of the river. The longitude and latitude
coordinates near the centre of the site are (10083803800W, 2885802500N).

2.2 Hyperspectral imagery acquisition

Hyperspectral imagery was acquired using an airborne imaging system described by
Yang et al. (2003). The system consisted of a digital CCD camera, a hyperspectral
filter, a front lens and a PC equipped with a frame grabbing board and camera utility
software. The hyperspectral imaging system was configured to capture 12-bit images
in 128 bands in the visible to NIR region of the spectrum (457–922 nm) with a
bandwidth of 3.6 nm. The swath of images was 640 pixels.

A Cessna 206 single-engine aircraft with a camera port in the floor was used as
the platform for image acquisition. No stabilizer or inertial measurement device was
used to dampen or measure platform variations, but care was taken to minimize the
effects of winds and changes in the aircraft’s speed and flight direction. The aircraft
was stabilized at a predetermined altitude of 2440 m above ground level, a speed of
180 km/h, and a flight direction during the course of image acquisition. A ground
pixel size of approximately 2.0 m was achieved. Hyperspectral imagery was acquired
between 1200 and 1400 h central standard time on 18 November 2009 and 8 October
2010 under sunny and calm conditions.

2.3 Image processing, transformation and classification

The geometric distortions due to movements in the across-track direction and
variations in roll were corrected using a reference line approach (Yang et al. 2003).
The geometrically corrected hyperspectral images were rectified to a georeferenced
CIR image using rubber sheeting. The CIR image was taken using a multispectral
imaging system and rectified to the universal transverse mercator (UTM), World
Geodetic Survey 1984 (WGS-84), Zone 14N, coordinate system based on a set of the
ground control points located with a submeter-accuracy Trimble GPS Pathfinder
ProXRT receiver (Trimble Navigation Limited, Sunnyvale, CA). The procedure for
image rectification was performed using ERDAS IMAGINE (ERDAS, Inc.,
Norcross, GA). Bands 1–5 and 108–128 (a total of 26 bands) appeared to be noisy
and were removed from each hyperspectral image and the remaining 102 bands with
a spectral range of 475–845 nm were used for analysis.

The minimum noise fraction (MNF) transformation implemented in ENviron-
ment for Visualizing Images (ENVI) (Research Systems, Inc., Boulder, CO, USA)
was used to reduce the spectral dimensionality and spectral noise in the hyperspectral
imagery. The MNF transform is based on two principal component analysis
transformations and divides the original hyperspectral data into two parts: one part
associated with large eigenvalues and coherent eigenimages, and a complementary

Geocarto International 415

D
ow

nl
oa

de
d 

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

 a
nd

 y
ou

r 
st

ud
en

t f
ee

s]
 a

t 0
7:

24
 2

7 
A

ug
us

t 2
01

2 



part with near-unity eigenvalues and noise-dominated images (Green et al. 1988).
Figure 1 shows eigenvalues of the first 50 MNF bands derived from the two
hyperspectral images for the two years. Eigenvalues decrease sharply from about 240
for 2009 and from 190 for 2010 to about 2 at MNF band 20 for both years. Since
bands with large eigenvalues contain useful data and bands with eigenvalues near
one contain noise, the bands greater than 20 contained mainly noise. Based on the
eigenvalue plots and visual inspection of the MNF band images, the first 20 bands
from the transformed MNF images would be sufficient to replace the original 102-
band images. For potential improvement on classification results, the first 30 bands
from the MNF images were selected for image classification.

The major cover type classes for the study site consisted of giant reed, mixed
woody and herbaceous vegetation, bare soil/roads and water. For 2009, giant reed
included healthy giant reed and moisture-stressed giant reed with smaller and sparser
stands. Because of the variations within the classes, each major class was divided into
more subclasses. For 2009, there were a total of 11 subclasses, including four
subclasses of giant reed, one class of moisture-stressed giant reed, three subclasses of
mixed dense vegetation, two subclasses of bare soil and sparse vegetation and one
class of water. For 2010, there were also a total of 11 subclasses, including three
subclasses of giant reed, four subclasses of mixed dense vegetation, two subclasses of
bare soil and sparse vegetation and two subclasses of water. For supervised training,
different numbers of areas or regions of interest, with known cover types were
selected and digitized on each image as the training samples to represent respective
subclasses or endmembers. These training areas were first verified on the ground and
then selected on the hyperspectral images as training samples. The numbers of
digitized training pixels ranged from 288 to 1532 among the 11 subclasses for 2009

Figure 1. Minimum noise fraction (MNF) eigenvalues versus MNF bands derived from two
102-band hyperspectral images taken at a giant reed-infested site near Quemado, TX in 2009
and 2010, respectively.
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and from 230 to 1194 among the 11 subclasses for 2010. A boundary was defined for
the study site to exclude the areas outside the boundary for image classification. The
total area encompassed by the boundary was approximately 57 ha.

Six commonly used supervised classification methods, including MD, MAHD,
ML, SAM, MTMF and SVM, were applied to the two 30-band MNF images. The
ML classifier uses the class means derived from the training data and assigns each
pixel to the class that has the closest Euclidean distance from the pixel (ERDAS
2002). The MAHD method is similar to MD, except that the covariance matrix is
used in the calculation (ERDAS 2002). Each pixel is assigned to the class for which
MAHD is the smallest. ML classification assumes that the data for each class in each
band are normally distributed and it calculates the probability that a given pixel
belongs to a specific class (Richards 1999). Each pixel is assigned to the class that has
the highest probability (i.e. the ML). SAM is a spectral classification technique that
uses the n-dimensional angle to match pixels to endmembers (Kruse et al. 1993). The
algorithm determines the spectral similarity between a pixel spectrum and an
endmember spectrum by calculating the angle between them, treating them as
vectors in a space with dimensionality equal to the number of bands. Each pixel is
assigned to the endmember whose spectrum has the smallest spectral angle with the
pixel spectrum. MTMF is a spectral unmixing technique that maximizes the response
of the defined endmembers on each endmember abundance image (Harsanyi and
Chang 1994). The matched filtering (MF) score images were then classified into the
defined endmembers or subclasses based on maximum abundance values. In other
words, each pixel was assigned to the class that had the highest MF score. The SVM
classifier is a kernel-based machine learning technique that separates the classes with
a decision surface that maximizes the margin between the classes (Hsu et al. 2007).
Each pixel is classified to the class having the highest probability. There were six
classification maps for each year. The subclasses within each classification map were
then merged into the five defined major classes for 2009 and the four major classes
for 2010.

2.4 Accuracy assessment

For accuracy assessment of the merged classification maps, 125 points were
generated and assigned to the classes in a stratified random pattern for each year.
The UTM coordinates of these points were determined and the Trimble GPS receiver
was used to navigate to these points for ground verification. Error matrices for each
classification map were generated by comparing the classified classes with the actual
classes at these points. Overall accuracy, producer’s accuracy, user’s accuracy and
kappa coefficients were calculated based on the error matrices. Kappa analysis was
also performed to test if each classification was significantly better than a random
classification and if any two classifications were significantly different (Congalton
and Green 1999).

3. Results and discussion

Figure 2 shows two pairs of normal colour and CIR composite images derived from
the two 102-band hyperspectral images acquired in 2009 and 2010, respectively. On
the normal colour images, healthy giant reed has a smooth green colour, whereas
other mixed dense vegetation has a dark green tone. On the CIR image, healthy giant
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reed has a distinct bright reddish colour, though moisture-stressed giant reed in 2009
has a dark reddish tone. Mixed dense woody and herbaceous vegetation show a dark
reddish tone with variations among different species, sparse senescing grass and
herbaceous species have a greyish to pinkish response, bare soil and roads have a
light grey to white colour, and water has a blue colour. Although healthy giant reed
had a distinct spectral response, the stressed giant reed in 2009 had a similar spectral
response to mixed vegetation species as shown on the normal colour and CIR
images.

Figures 3 and 4 give the classification maps based on the ML and SVM classifiers
for 2009 and 2010, respectively. Visual comparison of the classification maps with
the normal and CIR images shown in Figure 2 indicates that giant reed and other
cover types were well separated on the ML and SVM classification maps.

Figure 2. Normal colour and colour-infrared (CIR) composite images derived from two 102-
band hyperspectral images taken at a giant reed-infested site near Quemado, TX in 2009 and
2010, respectively.
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To quantitatively evaluate the performance of the six classifiers, Table 1
summarizes the accuracy assessment results for the classification maps generated
from the 30-band MNF images based on the six classifiers in 2009 and 2010. Overall,
accuracy ranged from 88.0% to 94.4% in 2009 and from 88.0% to 95.2% in 2010.
Among the six classifiers, SVM had the highest overall accuracy, whereas MTMF
had the lowest overall accuracy in both years. Overall kappa varied from 0.835 to
0.27 for 2009 and from 0.824 to 0.929 for 2010 among the six classifiers, indicating
the classification results agreed well with the reference data (a kappa value of 1
represents a perfect agreement between the classification and reference data). Kappa
analysis showed that all the classifications were significantly better than a random
classification.

Table 2 gives the kappa analysis results for pairwise comparisons among the six
classification maps for each of the two years. For 2009, SVM was significantly better
thanMD,MAHD, SAM andMTMF, while ML performed as well as SVM.Moreover,
ML was significantly better than SAM, but there were no significant differences among
MD,MAHD andML or amongMD,MAHD, SAM andMTMF. For 2010, SVMwas
significantly better than MAHD, SAM and MTMF, while MD and ML performed
equally well compared with SVM. However, there were no significant differences among
MD, MAHD, ML, SAM and MTMF. These results indicate that SVM and ML
generally performed better than the other classifiers for both years.

Tables 3 and 4 summarize the producer’s and user’s accuracies for the
classification maps generated from the 30-band MNF images based on the six
classifiers for 2009 and 2010, respectively. For 2009, SVM and ML provided

Figure 3. Five-category classification maps based on (a) maximum likelihood (ML) and
support vector machine (SVM) classifiers from the 30-band minimum noise function (MNF)
image transformed from a 102-band hyperspectral image for a giant reed-infested site near
Quemado, TX in 2009.
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excellent producer’s and user’s accuracies ranging from 90.5 to 100% for both giant
reed and stressed giant reed. MD and MTMF also had excellent producer’s and
user’s accuracies from 91.2 to 96.9% for giant reed, but the user’s accuracy for
stressed giant reed was 72% for MD and 82.6% for MTMF. The lower user’s
accuracy was mainly due to the misclassification of mixed vegetation as stressed

Figure 4. Five-category classification maps based on (a) maximum likelihood (ML) and (b)
support vector machine (SVM) classifiers from the 30-band minimum noise function (MNF)
image transformed from a 102-band hyperspectral image for a giant reed-infested site near
Quemado, TX in 2010.

Table 1. Overall accuracy indicators for classification maps based on six classification
methods from the 30-band minimum noise fraction (MNF) images transformed from two
hyperspectral images for a giant reed-infested site near Quemado, TX in 2009 and 2010,
respectively.

Classifier

2009 2010

Overall
accuracy

Overall
kappa Z statistic*

Overall
accuracy

Overall
kappa Z statistic*

MD 88.8 0.856 23.4 92.8 0.895 26.4
MAHD 88.8 0.855 23.3 89.6 0.849 21.4
ML 93.6 0.917 32.2 92.0 0.883 24.8
SAM 87.2 0.835 21.6 89.6 0.848 21.3
MTMF 88.0 0.844 22.3 88.0 0.824 19.3
SVM 94.4 0.927 34.7 95.2 0.929 33.0

Notes: MD, minimum distance; MAHD, Mahalanobis distance; ML, maximum likelihood; SAM, spectral
angle mapper; MTMF, mixture tuned matched filtering; and SVM, support vector machine. *All
classifications are significantly different from a random classification at the 0.05 level.
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giant reed. MAHD and SAM provided accuracy values of 88.2–93.8% for giant reed
and 79.2–95% for stressed giant reed. For 2010, SVM had a producer’s accuracy of
93.3% and a user’s accuracy of 100% for giant reed. The other five classifiers
provided producer’s accuracy values of 85–88.3% and user’s accuracies of 94.6–
100% for giant reed. The lower producer’s accuracy values for all the classifiers were
mainly caused by the misclassification of giant reed as mixed dense vegetation.

For mixed dense vegetation, SVM and ML provided producer’s and user’s
accuracy values of 86.8–94.3% in 2009, whereas as the other four classifiers had
accuracy values of 74.3–91.4% in the same year. SVM was also effective in
distinguishing mixed dense vegetation in 2010 with a producer’s accuracy of

Table 2. Kappa analysis results (Z-statistic) for pairwise comparisons among six
classification maps generated from the 30-band MNF image transformed from two 102-
band hyperspectral images taken at a giant reed-infested site near Quemado, TX in 2009 and
2010, respectively.

Classifier MD MAHD ML SAM MTMF

Based on 2009 image
MAHD 0.01
ML 71.33 71.33 1.70*
SAM 0.38 0.38 1.54 70.17 71.80*
MTMF 0.22 0.21 70.27 71.96*
SVM 71.59* 71.59*
Based on 2010 image
MAHD 0.88
ML 0.24 70.64 0.65
SAM 0.89 0.01 1.07 0.42 72.07*
MTMF 1.31 0.43 71.02 71.66*
SVM 70.78 71.65*

Notes: MD, minimum distance; MAHD, Mahalanobis distance; ML, maximum likelihood; SAM, spectral
angle mapper; MTMF, Mixture tuned matched filtering; and SVM, support vector machine. *Significantly
different between the two classifications at the 0.05 level. The negative sign indicates that the classification
method on the left is better than the one on the top.

Table 3. Accuracy assessment results for six classification maps generated from the 30-band
minimum noise function (MNF) image transformed from a 102-band hyperspectral image of a
giant reed-infested site near Quemado, TX in 2009.

Producer’s accuracy (PA, %) and user’s accuracy (UA, %)

Overall
Giant reed

Stressed
giant reed

Mixed
dense

vegetation

Bare soil/
sparse

vegetation Water

Classifier accuracy (%) PA UA PA UA PA UA PA UA PA UA

MD 88.8 91.2 93.9 90.0 72.0 80.0 84.8 92.3 100.0 100.0 100.0
MAHD 88.8 88.2 93.8 95.0 79.2 85.7 81.1 84.6 100.0 100.0 100.0
ML 93.6 94.1 94.1 95.0 90.5 91.4 88.9 92.3 100.0 100.0 100.0
SAM 87.2 88.2 93.8 95.0 73.1 74.3 78.8 92.3 100.0 100.0 100.0
MTMF 88.0 91.2 96.9 95.0 82.6 91.4 76.2 69.2 100.0 100.0 100.0
SVM 94.4 94.1 100.0 95.0 90.5 94.3 86.8 92.3 100.0 100.0 100.0

Note: MD, minimum distance; MAHD, Mahalanobis distance; ML, maximum likelihood; SAM, spectral
angle mapper; MTMF, mixture tuned matched filtering; and SVM, support vector machine.
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96.6% and a user’s accuracy of 84.8%. However, the other classifiers had lower
user’s accuracy values (70–78.6%) due to the misclassification of giant reed as
mixed dense vegetation. For the bare soil and sparse vegetation category, MD,
ML, SAM and SVM provided excellent results (92.3–100% in 2009 and 91.7–
100% in 2010), while MAHD and MTMF had lower accuracy values in both
years. As expected, water was the easiest cover type to distinguish. All the six
classifiers accurately separated water with accuracy values of 100% in 2009 and
92.3–100% in 2010.

Based on the results of overall accuracy, producer’s accuracy, user’s accuracy
and kappa analysis of all the classification maps for the two years, SVM
appeared to be the best classifier. Although ML was not consistently superior to
MD, MAHD, SAM and MTMF in all the cases, it provided excellent overall
accuracy and more balanced producer’s and user’s accuracies for the individual
classes, especially for giant reed and stressed giant reed. Nevertheless, the other
four classifiers have the potential to be as effective as ML. Of the six classifiers
evaluated in this study, MTMF is a subpixel or soft classifier, while the other five
are hard classifiers. Due to the high spatial resolution of the image data used in
this study, the hard classifiers seem to be sufficient. If hyperspectral imagery with
lower spatial resolution, such as 20-m AVIRIS data, is to be used, MTMF and
other spectral unmixing techniques can be used to separate giant reed from mixed
pixels. Image classification results depend on the composition and similarity of
plant species and the growth conditions at a specific site, and the best
classification methods identified for one giant reed site may not perform the
best at other infested sites. Therefore, it is always a good practice to use two or
more classifiers for image classification.

4. Conclusions

This study evaluated airborne hyperspectral imagery and compared six commonly
used classifiers for distinguishing giant reed. Among the six classifiers examined,

Table 4. Accuracy assessment results for six classification maps generated from the 30-band
minimum noise function (MNF) image transformed from a 102-band hyperspectral image of a
giant reed-infested site near Quemado, TX in 2010.

Producer’s accuracy (PA, %) and user’s accuracy
(UA, %)

Giant reed

Mixed
dense

vegetation

Bare soil/
sparse

vegetation Water

Classifier Overall accuracy (%) PA UA PA UA PA UA PA UA

MD 92.8 88.3 100.0 100.0 76.3 91.3 100.0 100.0 100.0
MAHD 89.6 85.0 100.0 96.6 70.0 87.0 95.2 100.0 100.0
ML 92.0 86.7 98.1 96.6 77.8 100.0 95.8 92.3 100.0
SAM 89.6 86.7 98.1 89.7 74.3 95.7 91.7 92.3 92.3
MTMF 88.0 88.3 94.6 75.9 78.6 100.0 79.3 92.3 100.0
SVM 95.2 93.3 100.0 96.6 84.8 95.7 95.7 100.0 100.0

Note: MD, minimum distance; MAHD, Mahalanobis distance; ML, maximum likelihood; SAM, spectral
angle mapper; MTMF, mixture tuned matched filtering; and SVM, support vector machine.
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SVM and ML generally performed better than the other four classifiers for
distinguishing this invasive weed. Because of the variations in plant growth and
ground cover conditions within classes, it is necessary to define subclasses within any
non-uniform major classes (i.e. giant reed) for supervised classification.

Previous studies have demonstrated that aerial photography, airborne multi-
spectral imagery and high resolution satellite imagery can all be used for mapping
giant reed infestations using the ML classifier. Although there is no report on the use
of SVM for detecting giant reed from multispectral imagery, both the SVM and ML
classifiers can be used to classify multispectral and hyperspectral imagery. As more
remote sensing imagery is becoming available, accuracy and cost associated with
different types of imagery should be considered. Airborne multispectral imagery is
generally cheaper to acquire and easier to process than hyperspectral imagery, so it is
more cost-effective for this application. High resolution satellite imagery may be
more effective than airborne imagery if large areas need to be mapped.
Hyperspectral imagery requires more sophisticated camera systems and involves
intensive data processing, but it has the potential to improve classification results
if spectrally similar vegetation species to giant reed occur in the target imaging
areas. Therefore, the type of imagery to be selected for a particular study depends
on image availability, complexity of associated plant communities, size of the
area, and time and cost constraints. More research is needed to compare different
types of imagery for the detection of giant reed in terms of accuracy, suitability
and cost-effectiveness.
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